
The Model Layer

What is Model?

In MVC the Model layer is typically the largest and more

important core piece. The Model is designed to house the

business logic and data access code. For example, it

computes logics and maintains the database transactions.

The view and controller interacts with the model and

provides user interface to it.

The MVC architecture dictates that, the Model layer should

be self contained and function independently from the view

and control layer. The core application code can be used

over and over again with multiple user interface.



The Model Layer

Model Layer Breakdown:

Typically the Model layer of designed MVC architecture

can be broken down into three conceptual sub layers.

External Interface

Business Logic

Data Access

Model Layer



The Model Layer

Struts and the Model:

The Struts layer does not provide any specific features to

developing Model layer of your application. Struts gives

your application flexibility to use any approach for

building model layer code. It might be Object Relational

Mapping (ORM), Enterprise JavaBeans(EJB), Java Data

Objects (JDO), Data Access Object (DAO) pattern, Struts

will accommodate.

Your model code will be accessed from the sub classes of

the Struts Action object that are part of the controller layer

of the Struts framework.



The View Layer

In MVC application, the view layer provides an interface to

your application, be it for users with browser or for web

services.

Basically the view layer is the conduit for getting data in

and out of the application. The view layer simply

concentrate on the interface.

Keeping the model and view layers separate from one

another allows an application’s interface to change

independent to the model layer and vice versa. This

separation also allows to have multiple interfaces (or

views).



The View Layer

Struts and View Layer:

Struts provides rich set of functionality and features for

developing the View layer of MVC applications. It can be

HTML/JSP or XML or Swings or whatever your

application needs. Struts HTML/JSP view layer support

can be broken down into the following major components:

1) JSP Pages

2) Form Beans

3) JSP tag Libraries

4) Resource bundles



The Controller Layer

The Controller layer of MVC is responsible for

creating the abstraction between the Model and

View layers. It acts as a liaison (link) between

model and view layer. The controller layer serves as

a central point of access to the application.

All the requests to MVC web application flow

through the controller. It provides security, caching,

logging and so on.



The View Layer

Struts and Control layer:

Struts provides a robust controller layer implementation

that has been designed from the ground up to be extensible.

Its core is the Controller servlet, ActionServlet, which is

responsible for initializing a struts application’s

configuration from the struts configuration file and for

receiving all incoming requests to the application.

Upon receiving a request, ActionServlet delegates its

processing to the struts request processing engine.



The View Layer
The ActionServlet class:

The class org.apache.struts.action.ActionServlet is called

the ActionServlet. In the Jakarta Struts Framework this

class plays the role of controller. All the requests to the

server goes through the controller. Controller is responsible

for handling all the requests. The ActionServlet is the main

controller class that receives all incoming HTTP requests

for the application. ActionServlet is responsible for

initializing the struts framework for your application. Like

any other servlet, ActionServlet must be configured in your

application’s web application deployment descriptor:

web.xml.There are two ways that ActionServlet can be

configured to receive requests in web.xml



The ActionServlet class: First, using path mapping:

<servlet>

<servlet-name>action</servlet-name>

<servlet-class>org.apache.struts.action.ActionServlet </servlet-class>

<init-param><param-name>config</param-name>

<param-value>/WEB-INF/struts-config.xml</param-value></init-

param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>action</servlet-name>

<url-pattern>/do/*</url-pattern>

</servlet-mapping>



The ActionServlet class: Second, using extension mapping:

<servlet>

<servlet-name>action</servlet-name>

<servlet-class>org.apache.struts.action.ActionServlet </servlet-class>

<init-param><param-name>config</param-name>

<param-value>/WEB-INF/struts-config.xml</param-value></init-

param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>action</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>



The Request Processing Engine:

Struts uses its request processing engine to perform the

processing for all requests received by the ActionServlet. The

request processing engine takes each request and breaks its

processing down into several small tasks.

Jakarta Commons Chain based request Processing:

The RequestProcessor class based processing originally used

in struts provides a nice abstraction for each part of the

request processing cycle.

The common chain lib. Provides an implementation of the

chain of responsibility pattern. The chain represents the entire

computations as a series of commands.



The RequestProcessor class based Processing:

The RequestProcessor Class is the actual place where the request

processing takes place in a Struts controller environment.

When the request object first reaches the actionservlet class then it

invokes the process method of the underlying RequestProcessor

Class.

processor has most of the following responsibilities:

Determine path, Handle Locale, Process content and encoding type,

Process cache headers, Pre-processing hook, Determine mapping,

Determine roles, Process and validate actionForm, Return a

response



The Action Class:

The goal of an Action class is to process a request, via its execute

method, and return an ActionForward object that identifies where

control should be forwarded (e.g. a JSP, Tile definition, Velocity

template, or another Action) to provide the appropriate response.

In the MVC/Model 2 design pattern, a typical Action class will

often implement logic like the following in its execute method:

1)Validate the current state of the user's session

2) If validation is not complete, validate the form bean properties as

needed.

3) Perform the processing required to deal with this request

4) Update the server-side objects that will be used to create the next

page of the user interface.

5) Return an appropriate ActionForward object that identifies the

presentation page


