
Operating System 

Structure



 An operating system is a construct that allows the user application 

programs to interact with the system hardware.

 Since the operating system is such a complex structure, it should be 

created with most care so it can be used and modified easily. 

 An easy way to do this is to create the operating system in parts. Each of 

these parts should be well defined with clear inputs, outputs and functions.



Simple Structure

 There are many operating systems that have a rather simple structure. 

These started as small systems and rapidly expanded much further than 

their scope. 

 A common example of this is MS-DOS. It was designed simply for a recess 

amount for people. There was no indication that it would become so 

popular.

 An image to illustrate the structure of MS-DOS is as follows:





 It is better that operating systems have a modular structure, unlike MS-DOS. 

That would lead to greater control over the computer system and its 

various applications.

 The operating system is divided into a number of layers (levels), each built 

on top of lower layers. The bottom layer (layer 0), is the hardware; the 

highest (layer N) is the user interface. 

 „With modularity, layers are selected such that each uses functions 

(operations) and services of only lower-level layers



Layered Structure

One way to achieve modularity in the operating 
system is the layered approach. In this, the 
bottom layer is the hardware and the topmost 
layer is the user interface.

An image demonstrating the layered approach 
(views) is as follows:







Multiprogramming needed for efficiency

Single user cannot keep CPU and I/O devices busy at 

all times

Multiprogramming organizes jobs (code and data) so 

CPU always has one to execute

A subset of total jobs (job pool) in system is kept in 

memory

One job selected and run via job scheduling

When it has to wait (for I/O for example), OS switches 

to another job



 Timesharing (multitasking) is logical extension in which CPU switches 

jobs so frequently that users can interact with each job while it is 

running, creating interactive computing

 Response time should be < 1 second

 Each user has at least one program executing in memory process

 Job scheduling: Which jobs to bring to memory from job pool on 

disk.

(The job pool contains both jobs that are currently executing 

and jobs that have been scheduled but are not yet being executed)

 If several jobs ready to run at the same time  CPU scheduling

(CPU scheduling is a process which allows one process to use 

the CPU while the execution of another process is on hold(in waiting 

state) . The aim of CPU scheduling is to make the system efficient, fast 

and fair.)

 Virtual memory allows execution of processes not completely in 

memory



Memory Layout for Multiprogrammed

System


