Understanding the need for MVC

Simple
Application

»

&
@

»

Complex
Application °

|

»

Scripting elements calling servlet
code directly

Scripting elements calling servlet
code indirectly (by means of utility
classes)

Beans

Servlet/JSP combo (MVC)

MVC with JSP expression [anguage
Custom tags

MVC with beans, custom tags, and
a framework like Struts or JSF



MVC Frameworks

An elaborate framework is necessary

— Frameworks are sometimnes useful
« Struts
- JavaServer Faces (JSF)
— They are not required!
- Implementing MVC with the builtin RequestDispatcher

works very well for most simple and moderately complex
applications

MVC totally changes your overall system
design
— You can use MVC for individual requests

— Think of 1t as the MV C approach, not the
MV C architecture
- Also called the Model 2 approach



MV C Architecture
MVC

MySQL

| Model

\\ 7

Controller

Dispatcher
Routes
Web Server

1
e




MV C Architecture

The term “Architecture” suggests “overall
system design®. It Is quite common for
applications to handle some requests with
servlets.

The other requests with JSP and servlets
acting in conjunction. Due to this, we have to
use the MVC approach .



Implementing MVC with RequestDispatcher

The most important point about MVC Is the idea of
separating the business logic and data access
layers from the presentation layer.

1) Define bean to represent data

2) Use a servlet to handle requests

3) Populate the Beans

4) Store the bean In the request, session, or servlet
5) Forward request to JSP

6) Extract data from the Bean



Summarizing MVC Code

This section Summarizes the code that would be used for
request-based, session-based and application-based
MVC approaches

1) Request-Based Data Sharing

In request-based sharing the servlets stores the
beans in the HttpServilet-Request, where they are
accessible only to the destination JSP pages.

Servlet:

Request.setAttribute(“Key”, Value);
RequestDispatcher d=new request.getRequestDispatcher(“page.jsp”);
Dispatcher.forward(request, response)

JSP Page:
<|sp:useBean id="key” type="class” scope="request” />
<|sp:getProperty name="key" Property="xyz" />



Summarizing MVC Code

2) Session Based Data Sharing

In this the servlet stores the beans in the HttpSession, where
they are accessible to the same client in the destination
JSP Page.

Servlet:

Session.setAttribute("Key”, Value);
RequestDispatcher d=new request.getRequestDispatcher(“page.jsp”);
Dispatcher.forward(request, response)

JSP Page:
<|sp:useBean id="key” type="class” scope="Session” />
<|sp:getProperty name="key" Property="xyz" />



Summarizing MVC Code

3) Application Based Data Sharing

In this the servlet stores the beans in the Servlet-Context,
where they are accessible to any client in the destination
JSP Page.

Servlet:

getServletContext().setAttribute(“Key”, Value);
RequestDispatcher d=new request.getRequestDispatcher(“page.jsp”);
Dispatcher.forward(request, response)

JSP Page:
<|sp:useBean id="key” type="class” scope="Application” />
<|sp:getProperty name="key” Property="xyz" />



